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Abstract 
In this paper, we analyze the performance of protocols in a network that consists of both 
satelli te and terrestrial components.  One method, proposed by outside research, to 
improve the performance of network transfers over satelli te is to use a performance 
enhancing proxy often dubbed spoofing.  Spoofing involves the transparent splitting of a 
network connection between the source and destination by some entity within the 
network path.  In order to analyze the impact of spoofing, we constructed a simulation 
suite based around the network simulator ns-2.  The simulation reflects a host with a 
satelli te connection to the Internet or terrestrial network and all ows the option to spoof 
connections just prior to the satelli te.  The methodology used in our simulation allows us 
to analyze spoofing over a large range of file sizes and under congested conditions, while 
prior work on this topic has primarily focused on bulk transfers with no congestion.  As a 
result of these simulations, we find that the performance gain of spoofing is less 
beneficial for smaller sized transfers than gains obtained when transferring large files. 

1 Introduction 
A growing topic in the past few years has been that of hybrid networks, or networks that 
contain both terrestrial and wireless links.  While there are many forms of hybrid 
networks, the work presented in this paper focuses on the use of a geo-synchronous 
satelli te within a network path.  More specifically, the satelli te link is located just prior to 
the user, similar to a DirectPC model.  Although not discussed in this paper, satelli tes do 
carry some advantages over traditional cable.  However, one of the main disadvantages of 
using a satelli te in network communication is the long delay needed to transfer data to 
and from the satelli te.  Typical delays range on the order of half a second to travel from 
the ground to the satelli te and back. 
 The Transmission Control Protocol (TCP) is the most widely used transport protocol 
for Internet traffic.  One TCP feature in particular, congestion control, incorporates a 
slow-start mechanism, which is highly susceptible to high delay links [AKO00].  The end 
result is a decrease in initial performance, since it takes longer to build up the sending 
rate over a long-delay network path.  Spoofing, which is discussed in more detail in 
Section 2, was introduced mainly for solving such a problem with high delays.  However, 
prior work on spoofing has focused on simulations of bulk transfers without congestion, 
and has thus left an incomplete picture of spoofing’s overall performance.  The project 
discussed in this paper focuses on creating a simple yet versatile simulation environment, 
in which the performance of spoofing can be seen across a large range of file transfers, 
while under congestion conditions. 
 The remainder of the paper includes Section 2, which discusses spoofing in greater 
depth, and Section 3, which outlines the actual simulation mechanics and detail s.  Section 
4 presents the results of those simulations.  Finally, Section 5 summarizes the conclusions 
and lists possible areas for future work on this subject.  

2 Background 
In an attempt to mitigate the disadvantages incorporated with long -latency links, 
researchers have been introducing performance-enhancing proxies (PEPs) into networks.  
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One such PEP that is currently being used in satelli te networks is TCP spoofing [PILC-
ID, I-TCP, ASBD96].  The objective of spoofing involves isolating the long-latency link 
by introducing a middle agent which spli ts the TCP connection (see Figure 1).  However, 
unlike a proxy cache, spoofing is transparent to both the sender and receiver.  Thus, the 
middle agent, or ‘spoofer’ , takes on the personali ty of both parties.  The responsibili ty of 
the spoofer is to intercept, cache, and acknowledge data received by the sender and then 
forward that data to the receiver.  As a result, spoofing does break the end-to-end 
semantic of TCP, however while this raises several phil osophical issues [PILC-ID], those 
issues are not the focus of this paper.  Finally, it is worth noting that in our model data 
segments and connection teardowns are spoofed, while connection setup remains end-to-
end. 
 

Figure 1:  Satellite Spoofing 

3 Simulation Overview 

3.1 Terminology 
The following terms are explained below and are used throughout this paper:  

Flow:  A series of transmissions from one host to another. 
Packet:   A TCP segment 

 For these simulations we used three metrics to measure the performance of a network 
flow.  The first, throughput, is a measure of the time needed to complete a particular 
transfer and can be measured from either the sender or receivers perspective.  For a 
sender side analysis, the time of completion is marked by the reception of the ACK for 
the final data packet.  Whereas, the time of completion for receiver side analysis is 
marked upon transmission of the final ACK.  The second metric used is goodput, which 
is an indication of what percentage of data packets were unique.  Thus a goodput that is 
less than one would indicate a transfer that suffered from retransmissions.  Since it is 
possible to have retransmissions without data loss (e.g. spurious timeout, lost ACK), the 
final metric used in the simulation was the calculation of the number of dropped data 
packets, or simply drops.  The metrics are summarized in Table 1. 
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Throughput 
Unique Packets 
Transfer Time 

Goodput 
Unique Packets 
Total Packets 

Drops Number of dropped data packets 

Table 1:  Summary of Metrics 

3.2 Topology 
The test network consists of five hosts and five routers as shown in Figure 2 below.  Each 
host is connected to its appropriate router via an Ethernet link and runs TCP with 
selective acknowledgements (SACK) [RFC2018, FF96] and delayed ACKs [RFC1122, 
RFC2581].  Routers enforce drop-tail queuing on all li nks, but an option for enabling 
RED based queuing [FJ93] on both the satelli te and Internet links was implemented.  The 
thresholds for RED were based on suggestions from [Flo97] and are listed in the routing 
equations below.  Finally segment sizes of 1500 bytes were used [All00]. 

Figure 2:  Network Topology 

Queue Size 
 Ethernet = ∞ 
 Others = (Bandwidth in bytes per second ·  (2· Delay)) / Segment Size 
RED Queuing 
 Threshold = 1/5 ·  Queue Size 
 Maximum Threshold = 3/5 ·  Queue Size 

(Only the integer part of the result is taken from all calculati ons) 

Equation Set 1:  Routing Calculations 

 The topology is laid out such that there are distinct satellite and Internet portions.  
First, the satelli te is constructed asymmetrically to allow for the possibili ty of a low 
powered transmitter.  Delay over the satelli te is fixed at 250ms, and the download 
capacity set at a T1 rate.  The capacity of the transmitter is specified at runtime.  The 
second major portion of the topology, the Internet model, consists of four nodes.  The 
link between the two routers acts as the “Internet” , whose bandwidth and delay are also 

 

R1 R2 R3 R4 R5 h1 

Satellite 
1.5Mb/s         250ms 

Ethernet 
100Mb/s               0ms 

h2 h3 h4 

X Mb/s 

Y ms 

h5 

Internet Model 

Transmitter 
Z Mb/s         250ms 
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specified at runtime.  The two hosts in the model are responsible for generating cross 
traffic over the Internet link.  Also, even though the model for the Internet is simple and 
unrealistic of its real life counterpart, it is sufficient in capturing the basic characteristics 
of propagation delay, limiting bandwidth, and competing traffic. 
 The remaining hosts are the nodes at which connections of interest will take place.  
Using these three hosts, any combination of the hybrid network can be analyzed.  More 
specifically, host one represents a pure satellite user, and host five represents a user with 
a high-speed connection to the Internet.  Host two stands at a middle gr ound with access 
to both portions of the network.  This property also makes host two capable of spoofing 
connections as shown in Figure 3. 

Figure 3:  Spoofing in the Simulator 1 

Thus, with spoofing enabled, a connection from host five to one would be spoofed at host 
two.  It would cache, with infinite capacity, data received from host five and forward the 
data to host one. 

3.3 Traffic 
All transfers used in the simulation make use of the File Transfer Protocol (FTP) to 
transmit data.  No competing traffic is present on the satellite link as it represents a 
dedicated satellite channel2.  However, competing traffic is present on the Internet link by 
using an analytical FTP generator which is discussed in detail in Appendix A.  Traffic 
can also be generated by using a trace file to recreate sessions observed on a real 
network. 

3.4 Software 
The simulations in this paper make use of the Network Simulator (ns) [NS] version 2.1b6 
with two bug fixes, outlined in Appendix 0.  Traffic generation is separated from the 
simulation so as to facilitate reuse and modularization.  The overall layout of software 
structure is shown in Figure 4.  The output from ns consists of three trace files which are 
uniquely named in relation to the type of simulation being done.  This allows the analyzer 
to distinguish which traces to analyze and also allows for congruent execution of 
simulations.  The function of the controller is to synchronize the spawning and execution 
of both programs.  Finally, a script automates the entire process, synchronizing traffic 
generation with the controller and allowing for multiple runs of different case scenarios.  

                                                
1 Due to simulator restrictions, spoofing could not be done at routers as would likely be the case if it were 
implemented in a real network.  However, moving it to the host adds only the Ethernet delay which is 
neglect able and likely much smaller than any processing delays that would be present in a real system. 
2 The satellite in this simulation was based off of the Advanced Communications Technology Satellite 
(ACTS), which supported packet switching, spot transmissions, and frequency reuse. 

 

R1 R2 R5 h1 

h2 

h5 Internet Model 
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Figure 4:  Software Layout 

4 Results 
The results detailed in the following section are based on a 30 run simulation with the 
following characteristics: 

- T1 rate for Internet bandwidth:  Note that whil e the Internet has a physically larger 
capacity than that of a T1, the all ocation of bandwidth is regulated and so an actual 
obtainable value is less.  Also, earlier test based on this simulation showed that 
changes to either the Internet bandwidth or delay have a predictable eff ect on the 
measured metrics.  Therefore, in order to minimize the effect of extraneous 
bottlenecks, a T1 rate was used. 

- An Internet delay of 0.069 seconds:  This value came from sampling the delay of 
several sights at various geographical distances and averaging the result.  Again, the 
delay does have an effect on the simulations.  However, the purpose of these 
experiments was not focused on changes to the Internet properties and so the delay is 
sufficient in characterizing a typical value. 

- T1 rate for transmission to the satelli te:  While this rate is much higher than what is 
economically feasible for a home user, the effect of variances to the transmission 
capacity was not of interest for this set of experiments. 

- Transmission of files from the network user (host five) to the satelli te user (host one) 
under the following granularity:  0 to 100 packets by 1, 110 to 500 packets by 10, 600 
to 900 packets by 100, 1000 to 2000 packets by 1000 

- Network variances:  Drop-tail and RED queuing, end-to-end TCP connections and 
spoofing, sender side and receiver side analysis.  

- For the sake of simplicity, end-to-end TCP is referred to as ‘Regular’ TCP in any 
subsequent plots. 

 
Figures 5 and 7 show the throughput of the main flow (h5

�
h1) from either the 

receiver or sender side respectively.  The different setup combinations between the 
queuing and PEP types represent the four curves on the plot.  From the two plots we 
can see that, with our simulations, the use of RED based queuing has little eff ect on 
throughput in either case.  Also, in the long run the steady state throughput values are 
nearly the same regardless of whose viewpoint is taken (as one would expect).  
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Figure 5:  Throughput vs. Transfer Size (Receiver)  

Figure 6:  Percent Difference of Th roughput (Receiver) 

 Figures 6 and 8 show the percent difference of the throughput that was shown in 
figures 5 and 7.  The percent difference was calculated by taking the throughput 
difference of spoofing and end-to-end TCP over the throughput of end-to-end TCP.  In 
general: 
   Percent Difference = (PEP - Base) / Base, 
Where the base in this case would be the throughput obtained from end-to-end TCP.  
Thus, the line identified as “DropTail” in the plot refers to the percent difference between 
“Regular-DropTail” and “Spoofing-DropTail” .  For metrics, such as throughput, where a 
larger value indicates better performance, a positive percent difference indicates that the 
PEP outperformed the base condition, while a negative value indicates the exact opposite.  
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Figure 7:  Throughput vs. Transfer Size (Sender)  

Figure 8:  Percent Difference of Throughput (Sender)  

Also included in the percent difference plot is an enlarged view of transfers consisting of 
40 packets or less.  The importance of considering small transfers is shown in Figure 9.3  
From this plot, we see that transfers consisting of ten packets or less account for 90% of 
the network traffic.  Also, although the data represents only a single network, the 
underlining concept has been generally noted in other networks as well. 
 Plots for goodput and drops were included in Appendix C so as to not clutter the main 
document.  These plots follow the general principle of that seen with throughput, 
although both goodput and drops are independent of viewpoint.  Also, unlike throughput 
and goodput, a positive percent difference in the number of drops indicates that the base 
condition outperforms the PEP since an increase in drops is unfavorable. 
                                                
3 Cumulative Distribution Function (CDF) of network transfer sizes in packets as seen at the NASA GRC 
firewall on October 30, 2000. 
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Figure 9:  Distribution of Transfer Sizes  

 From the percent difference plots we can see that spoofing has very different effects 
depending on which vantage is used.  From the receivers viewpoint, there is little effect 
for very small transfers and at most a 10% gain for transfers of ten packets or less.  
However, from the sender’s perspective, the gain is much larger for those same small 
transfers.  The large gain in throughput for the senders could be very beneficial for busy 
web servers.  By freeing resources associated with long-delay connections quickly, it 
allows servers to satisfy more requests.  Again, in the long run, both viewpoints show 
relatively the same performance gain.  Both graphs contain some turbulence.  Turbulence 
reffers to several short and successive increases and declines, which can be attributed to 
the fact that the throughput values were an average of 30 runs and that the variance was 
very large.  However, the dip in throughput found around 400 packets in Figure 6 is 
rather unusual.  One possible cause is that the spoofer receives data more quickly, and 
thus overruns the satelli te channel, dropping a large number of packets.  This is possible 
since spoofing allows the rate of incoming packets to increase over the Internet and 
accumulate at the spoofer, which is still in early slow -start.  Thus, spoofing adds a second 
bottleneck into the network path.  The plot of drops shows a sharp increase around 400 
packets when spoofing is used, which is supportive of this claim. 

5 Conclusions and Future Work 
As a result of our simulation, we found that spoofing is indeed beneficial for large file 
transfers.  For small transfer sizes, spoofing greatly increased the throughput seen by the 
sender, but was much less beneficial for throughput observed at the receiver , which is the 
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vantage point perceived by the end-user.  Since a majority of data sent across networks is 
small, spoofing will not provide much advantage to a standard home user.  However, 
benefits to web servers and other content providers would be significant.  Also, spoofing 
allows for data to accumulate at the spoofer, creating a second bottleneck and increasing 
the number of dropped data packets, which also degrades the receivers perceived 
performance. 
 We realize that the work done in this paper reflects simulations and not actual data 
measurements on real networks.  Thus, a natural extension of this work may involve 
implementing these simulations in actual network test beds.  Other extensions involve the 
inclusion of other types of PEPs as well as the effect of changes to the asymmetry of the 
satelli te and to the characteristics of the Internet. 
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Appendix 

A FTP Traffic Generation 

A.1 Introduction 
The FTP Application-Level Traffic Generator (ALTGen-F) is a tool that can be used to 
describe realistic FTP traffic across network paths.  ALTGen-F is a stand-alone tool that 
generates a traffic profile, which can be used in conjunction with various applications 
such as simulators or measurement tools used in real networks. 
 
The traffic profile produced by ALTGen-F is based on mathematical models which 
incorporate both observations seen across real networks and the reasoning behind those 
observations [Pax94].  In comparison, empirical models are inflexible and rehash what 
was seen without endeavoring into the reasons behind the data.  Also, simple 
mathematical models tend to fail to capture any complexity within the data. 
 
In the area of network simulation, the process of generating traffic is often overlooked 
[PF97].  Often, traffic consists of a stream of uniform data or is generated from an 
oversimplified model.  Such representations fail to capture the key characteristics of the 
protocols.  This generator was created in order to produce traffic that better models the 
main characteristics and traits of the FTP protocol. 

A.2 FTP Traffic Generation 

A.2.1 Terminology and details 

The following terms are explained below and are used throughout this report:  
 
Flow:  A network path which hosts a set of FTP sessions. 

Flows are independent of each other. 
Session:  All occurrences within a specific invocation of a FTP application. 
Connection:  A single data transfer within a session.  All connections utili ze the 

Transmission Control Protocol (TCP). 
Inter-connection time:  Time between the end of one data connection and the start of the 

next within the same session. 
Delay between connections:  Same as Inter-connection time. 
Burst:  A series of connections whose inter-connection times are at most 4 seconds 

[Pax94]. 
Load:  The number of sessions to generate. 
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Using this vocabulary set, an example FTP session is shown in Figure 10 below. 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 10:  Example FTP session 

A.2.2 Distributions 

Aside from the standard distributions, several other distributions are used as follows: 
Pareto Distribution 
A skewed, heavy-tailed distribution whose distribution function is defined as 

F(x) = 1 - (k/x)α, (1) 
where α is the shape of the distribution and k is a scaling factor.  
Log2-Normal Distribution 
A log2-normal distribution refers to a random variable which follows a normal 
distribution after first applying a logarithmic transformation (in this case log base 2).  
Thus if random variable Y = log2 (X) ~ Normal (µ,σ), then X ~ Log2-Normal (µ,σ). 

A.2.3 Algorithm 

The following algorithm describes the steps used to generate a FTP traffic profile: 
I)   Preprocessing 

Preprocessing validates the program’s parameters and writes a small header to the 
traffic profile. 

II)  Generate the Traffic 
1) Flow Identification 

Flow identification is used to identify which sessions belong to which flow.  
Flows range in ID from zero to one less than the total number of flows.  The ID is 
incremented for each session and follows the following formula in general: 

 
2) Session Start Time Calculation 

No session will start at time zero, unless the initial calculation yields an initial 
increment of zero.  The time between successive session starts for a particular 
flow is based on a Poisson distribution with a user-specified mean.  A smaller 
mean will yield more condensed traffic, while a larger value will yield more 

For N flows, 
session[k]  corresponds to flow[k mod N]  
where  k=0, 1, 2, … , (Load - 1) 
 

Data Transfer 

Burst 

Session 

Number of connections = 5 
Session Size = 35 packets 

4 5 2 21 packets 3 

Inter-connection Time 
 

5 sec. 
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sparse traffic.  [PF95] shows that the time between FTP sessions is well modeled 
as a Poisson distribution. 

 
3) Session Size Calculation 

The current session size in bytes is calculated using a Log 2-Normal distribution 
[Pax94]4.  Thus, 

 
4) Generation of Connections within a Session 

Any given connection is defined by a Log2-Normal distribution. 

 
A connection, Ci, is calculated, and its size in bytes is added to the cumulative 
sum of all previous connections for that session.  If the total is less than the size of 
the session, this step is repeated.  If it is not, the connection is truncated so that the 
total number of bytes in the connections is equal to the session size.  This 
introduces a slight bias to the connection size calculation.  While the shape of the 
generated distribution remains the same, the average is shifted downward slightly 
as a result of the truncations.  Also, due to memory considerations for both the 
simulator and generator, the total number of connections may be restrained and an 
appropriate warning message displayed.5 
 

5) Calculation of Bursts 
The calculation of bursts is a complicated procedure that relies on two different 
distributions.  First, a Log2-Normal distribution is used for the top 95 percentile.  
The remaining bursts are characterized by a Pareto distribution.  The procedure 
(see Figure 11) goes as follows: 
 
For every connection in the session (in order of occurrence):  
If the current connection is the first connection or the previous connection is 
marked as non-burst, calculate a new burst size, B, based off of the two part 
distribution.  If the difference between the current connection size and the burst 
size is greater than or equal to zero, then the current connection is marked as 
burst, and the difference between the current connection size and the burst size 
becomes the new B.  Move to the next connection and repeat. 
 
 

                                                
4 Values for the parameters in the session, connection, and burst size calculations are those used in [Pax94].  
However, they are easily changeable within the code if adjustment to the model becomes necessary. 
5 The restraint is specified within the program, but can be modified if necessary. 

Session Size = 2R, where R~Normal(µsession, σsession) 

time i (Session[k]) = time i (flow[k mod N]) 
 = time i-1 (flow[k mod N]) + Poisson (mean start time) 

Connection, Ci = 2R, where R~Normal(µconnection, σconnection) 
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Figure 11:  Example of burst calculation 

 
6) Calculation of Delays between Connections 

The calculation of delay between data connections contains models not discussed 
in [Pax94] and is discussed in greater detail in § 3. 
 
A burst by definition is a series of connections separated by less than four seconds 
[Pax94].  Thus, for any two consecutive connections within a burst a time 
between zero and four is generated.  For any other combination of connections, a 
time greater than four is generated.  The model used in generating these values 
consists of three different distributions - Log2-Normal, exponential, and uniform - 
and are listed in the table below.  Finally, if a delay is observed to be zero, it is 
adjusted by one nanosecond since zero delays cannot exist in many simulators. 
 

0 - 2.5 seconds Exponential (0.616) 
Bursts 

2.5 - 4 seconds Uniform (2.5, 4) 
Non-Bursts 4 - 180 seconds Log2-Normal (3.27, 2.16) 

 
7) Generate the Report for the Session 

A report for the session is generated, where the start time is an offset in seconds 
from the start of the simulation and not the time between sessions.  All sends are 
the number of packets to transmit, which correspond to the number of bytes that 
were calculated previously and the packet size used in the simulation.  Finall y, all 
delays are in seconds.  The format of the report is shown below. 

Figure 12:  Report format 

 
8) Reset sizes and Repeat 

Step two is repeated for the desired number of sessions. 
 

Line/Session 
Number 

Flow 
ID 

Start 
Time 

Initial 
Send 

[  Subsequent 
Sends … ] 

[ Delays … ]  
Number of 

Connections 

 

Connection 
(Non-Burst) 

Connection 
(Burst) 

Burst Size 
Calculation 
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A.3 Modeling Delays Between Connections  
One of the characteristics absent from the models in [Pax94] was a detailed analysis of 
the time between connections within a session.  Thus, independent analysis was done 
using the same LBL-7 dataset used in [Pax94].  Since the times extracted from the data 
set were extremely skewed, a base two logarithmic transformation was applied to the 
data.  The result (see Figure 13) showed a distinct bi-modularity to the data, with the split 
occurring roughly around 2.5 seconds.  The data above this split fit very well to a normal 
distribution and resulted in an overall Log2-Normal distribution.  The data below the split 
was less behaved and seemed dependent on factors such as round trip times and process 
scheduling. 

 

Figure 13:  Time between connections after log base 2 transformation (LBL-7 Dataset) 

After some analysis a model consisting of two parts was derived using the data before the 
transformation.  An exponential model was used for data less than 2.5 seconds, and a 
uniform model was used for data between 2.5 and 4 seconds.  A simulation was then run 
and the results of the simulation were plotted against  the cumulative distribution function 
(CDF) of the original data set, as shown in Figure 14 and Figure 15. 
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Figure 14:  CDFs of the time between connections for both the LBL -7 and Generated datasets 

Figure 15:  CDFs of the times after a log base 2 transformation  
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It should be noted that the generated model tracks the original well 6 but is smoother due 
to the use of mathematical models. 

A.4 Future Work 
While this tool currently supports FTP traffic only, it was written with the hope of 
extending it to other applications such as HTTP.  Thus, the design loosely supports the 
addition of other traffic models.  Also, while analysis of the inter-connection model is 
based primarily on the LBL-7 dataset, it would be valuable to test the current model on 
additional, more recent traces.  Another interest is the effect that round trip times have on 
inter-connection times.  Such an analysis would require a packet level trace of network 
activity, which was unavailable at the time of the analysis. 

A.5 Conclusion 
This tool generates FTP sessions based on models which incorporate the key 
characteristics of the protocol.  By generating traffic that behaves off characteristics 
found at the application level, this tool will all ow for a better analysis of other network 
issues.  Finally, the traffic profile generated can be used alongside a variety of 
applications and tools. 
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B NS Bug Fixes 

B.1 Delayed ACK Timeout 
Problem: 
This bug arises when resetting a connection that uses delayed acknowledgements.  The 
ACK transmission timeout is not cancelled when a connection is reset.  Also, resetting a 
connection clears any pending ACKs, which are saved globally.  However, since the 
timeout is not cancelled correctly, upon expiration the simulator attempts to access a 
packet that no longer exists.  The result is a fatal error and an ungraceful termination. 
Solution: 
A reset function for the delayed ACK sink is written to override the base class reset 
function (TCP sink).  The new method correctly resets the ACK timer and calls upon its 
parent to finish the remaining portion of the reset routine.  Also, several checks for null 
pointers were needed in other areas of the code. 

B.2 Retransmission Timeout Calculation 
Problem: 
This bug arises when resetting a connection.  The retransmission timeout (RTO) 
sampling index is not updated correctly when resetting a connection.  The result is an 
incorrect sampling of path delay, which yields very large RTOs. 
Solution: 
Modify the reset method to correctly update the RTO sampling index to its initial value. 
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C Additional Results 

Figure 16:  Goodput vs. Transfer Size  

Figure 17:  Percent Difference of Goodput  
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Figure 18:  Number of Drops vs. Transfer Size  

Figure 19:  Percent Difference of Drops 
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